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Abstract—When a spherical elastic membrane is inflated it is well known that it may bifurcate into an
aspherical mode after the pressure maximum is reached. Upon further inflation the spherical configuration
is regained. Here we follow the developing aspherical solution path, for specific forms of strain-energy
function, using a simple numerical method. For a realistic strain-energy function it is shown that the
post-bifurcation solution curve connects the two bifurcation points, We also consider the inflation of
imperfect spherical membranes and show that bifurcation may still occur. For the class of Ogden materials
we investigate the asymptotic shape of arbitrary axisymmetric membranes.

1. INTRODUCTION

The initiation of aspherical modes during the inflation of spherical membranes has been
considered by several authors[l-3] for example. Most recently Haughton and
Ogden[4, 5] have considered the problem in terms of a general (incompressible, isotropic)
hyperelastic material. In particular, it was shown that all bifurcation points occur (if at all)
between the maximum and minimum values of the inflating pressure. Also, for realistic material
models which exhibit both a pressure maximum and minimum, it was shown that the bifur-
cation points must occur in pairs. This leads to the natural conjecture that the first bifurcation
point to occur indicates the initiation of the aspherical mode, while the second bifurcation point
(of the same mode number) indicates the return to the spherical configuration. Sewell[6] had
previously made this conjecture on the basis of experimemental results[7].

Needleman[3) has considered the inflation of slightly imperfect spherical membranes. His
resuits indicate that a perfectly spherical membrane is likely to show a ‘“‘closed loop”
behaviour. That is, an aspherical solution path connecting the two bifurcation points, at least for
certain specific forms of strain-energy function.

In the bifurcation analysis of inflated spherical shells it is supposed that the deformation
away from the spherical configuration is small. This means that it is not possible to consider the
developing aspherical paths.

In this paper we first formulate the equations governing the axisymmetric inflation of an
initially axisymmetric membrane. These equations, in different forms, are well known. However,
the derivation of the equations allows us to introduce the relevant notation and to put this work into
the context of the previous work involving bifurcation points only[4, 5].

In Section 4 we suppose that the membrane is initially perfectly spherical. The resulting
system of ordinary differential equations (containing the inflating pressure as a parameter) are
then solved numerically for specific forms of strain-energy function. The resulting post-
bifurcation curves are plotted to show how the deformation differs from that in the spherical
configuration, and also to show the developing aspherical shape of the membrane.

In Section 5 we consider spherical membranes with thickness imperfections. The resulting
solution curves are compared with the post-bifurcation curves for the perfectly spherical case.
It is shown that the bifurcation points may be retained or destroyed depending on the form of
the imperfection. This particular feature of imperfect membranes was not considered in [3).

Certain forms of strain—energy function do not show the “closed loop” post-bifurcation
behaviour and so the asymptotic shape of the membrane (as the enclosed volume - ) is of
some interest. In Section 6 we consider the asymptotic shape of inflated axisymmetric
membranes for the class of Ogden materials[8]. This follows the analysis of
Isaacson[9] who considered the case of a Mooney-Rivlin strain-energy function. We show that
the class of strain-energy functions considered can be divided into two subclasses. In one the
asymptotic shape of the membrane is necessarily spherical, independently of its initial shape or
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1124 D. M. HaugHToN
thickness variations, while in the second we cannot, at present, rule out the possibility of
aspherical asymptotic shapes even for initially spherical membranes,

2. MEMBRANE EQUATIONS

Let the middle surface of the membrane in its undeformed (and unstressed) configuration be
specified by the cylindrical coordinates (R, &, Z), where the Z-axis coincides with the assumed
axis of rotational symmetry. Any point on the middle surface can be defined by the arc length §
and the angle ®, where R = R(S), Z = Z(8). For a closed membrane we have

RO)=R(L)=0, h
with
RS>0 Se@OL), 2)

where L is the total meridional arc length of the membrane. The material of the membrane is
completely specified by defining the undeformed thickness H(S). We make the usual membrane
assumption that

Hmaxfl’(min < Is (3}

where H., is the maximum thickness of the membrane and ., is the minimum radius of
curvature of the middle surface.

The middle surface of the membrane, together with the inner and outer surfaces, are assumed
to be smooth. Combined with the rotational symmetry, this leads to

H'(0)=H'(L)=0, 4)
Z0)=Z2(L)=0, 3
where the prime denotes d/dS. ,

Now suppose that the membrane is deformed into the “current” configuration by the
application of an inflating pressure P >0 to the inner surface. The points on the new middle
surface are defined by the cylindrical coordinates (r(S), ¢, 2(S)).

From the rotational symmetry we have ¢ = ®. Since the membrane remains closed and the
deformation is smooth eqns (1), (2), (4) and (5) are valid for r(S), z(S) and h(S), where h(S) is
the thickness of the membrane in the current configuration.

The principal axes of the deformation are in the meridional, longitudinal and normal
directions. The corresponding principal stretches, evaluated on the middle surface, are given by

A =[P+ )R, {6)
/\2 = ?'f R, (7}

and, because of the assumed incompressibility
As=(hA)7h 8
We note that (7) is not valid at the poles of the membrane. However, it is easily shown that
h=A=|rl, S§=0,L. ()]
From [4], or for a more detailed account[10}, the equations of equilibrium can be written
r(hoy) + hr'{ey — on) =0, (10}

2' (722[".&1 + U;](?’lzu“ﬁzl)iigs = l\]AgP*, (11)



Post-bifurcation of perfect and imperfect sphercial elastic membranes 125

where P* = P/H(S) and o, oy, are the principal Cauchy stresses. Strictly, these stresses, and
the quantities defined below, are all averaged through the current thickness of the membrane.
See [4, 5] for details. However, for our purposes here, it is not necessary to consider this as the
errors involved do not invalidate (10) or (11).

We note that the third equilibrium equation is identically satisfied, a consequence of the
rotational symmetry.

Equations equivalent to (10) and (11) are well known, [9] and {11] for example.

If we assume the existence of a strain—energy function W(A,, A,, A;) per unit volume, then we
may write

on=AW,  op=AW, (12)
where W(A,, A)= WAy, A2, (AMA5)7Y) and W,‘ = aVWa/\“ (« = 1,2), having used the membrane

approximation o33 = 0. See [12] for details of a similar problem.
The boundary conditions necessary to complete the system are given by

r(0)=r(L)=z'0)=z'(L)=0. (13)
We note that it is only the derivative of z that appears in (10), (11) and (13), hence the system is
of third order and any one of (13) is surplus to requirements. It may be used, however, to speed

convergence when we are solving the system numerically.

3. NUMERICAL METHOD

For the numerical examples given here we restrict attention to those membranes which
initially have a spherical middle surface. We non-dimensionalize our coordinates by choosing
the initial radius of the middle surface to be unity. If we now write ¢ for the (non-
dimensionalized) arc length S, then

O0<f=<m, (14)
and
R =siné. (15)
The strain-energy function W and the pressure P are non-dimensionalized by choosing the
ground state shear modulus to be unity.

As we have already mentioned, the system of eqns (10) and (11) is of third order. From (11),
its derivative with respect ot 6, and (10) it is possible to rewrite the equations as

P ={=rRz2'AWo+ A (A + A= rhy HTH)YP* 4 4,20, W, - A, W)
x{(r'y W: +(2'PA, Wn] P*/( Wl)’}l(22’»\n Wn) (16)

for 8 € (0, m),

2" = {PA (A, Wiy — W) (A, Wy - 20, W) PH(W, )2 = 22'A3 W,
= A(PAy+ rAs = ri H'[H)P*Y (A, W) (17

for 6 € [0, 7}, where the prime now denotes d/d8 and Wy, = 3*W]aA %, etc. having used (12).
From (7) we find that

Az=0 at 6=0, (18)
Equations (9) and (18) with (4), (5), (11) and (17) enable us to show that

r')=r'(z)=0, (19)
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which completes the definition of the differential equations.
With the notation

xT=(nr,z), (20)
we can write the equations of equilibrium as
x' = f(x, P*). (21

The pressure P* appears in the equations as a parameter. In general it will be a given
function of 4, but for the special case of a perfect spherical shell it will be constant.

Boundary conditions to complete the system are given by (any three of) (13).

When a particular form of strain-energy function has been specified and a particular
pressure P*(8) is given then eqn (21) is solved numerically using a fourth-order Runge-Kutta
method with Newton (secant) iteration. The solutions are calculated to four places of decimals.
In none of the examples given here were any numerical difficulties encountered.

In considering slightly imperfect spherical membranes Needleman{3] used a completely
different approach to arrive at the equilibrium equations and a different (numerical) method of
solution to that used here.

4. POST-BIFURCATION OF SPHERICAL MEMBRANES

4.1 Spherical configuration and bifurcation points
In this section we restrict attention to membranes that are initially spherical with uniform
thickness. Firstly, suppose that the spherical shape is maintained during inflation. We then have

M=h=A (say} (22)

where A is constant with respect to 6. The strain-energy function W(A,, Ay) can be written
W(A)= W(A, 1), and we then have

P*=W,[A%, (23)
where W, = dW/aA. This follows from (11) after putting
r=Asing, 2'=-Asinég, 24

for a spherical configuration, or alternatively see [5].

We note that eqn (10) is identically satisfied in the spherical configuration and so this
corresponds to the “trivial” solution of the system.

It was also shown in {5] that bifurcations away from the trivial solution occur at turning
points of the surface tension in the membrane. In our notation, these bifurcation points are
given by solutions of

AW, -W, =0. (25

The values of A satisfying (25) are the first (and last) possible bifurcation points to occur[3]
and they correspond to the mode number n = 1,

For realistic forms of strain-energy function there will exist two values of A satisfying (25),
which must necessarily lie between the values of A corresponding to the maximum and
minimum values of the pressure P*. There may be more (pairs of) bifurcation points lying
between the turning points of the surface tension corresponding to higher order mode numbers.

4.2 Post-bifurcation .
In order to give specific examples of post-bifurcation behaviour we restrict attention to the
class of strain-energy functions proposed by Ogden{8]. In the present circumstances we can
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write
W1, A) = s (A% + A% + (A14)™% = 3, (26)

where the repetition of the index n implies summation over a finite number of terms. The
material constants are such that

inay >0 each n, V)

and we note that the ground state shear modulus u is given by

Hny = 2. (28

A three-term member of (26) which was shown in [8] to give good agreement with experimental
data for a particular rubber-like material has parameters

a = 13, as; = 50, a; = “2.0,
pt=1491, 1 =0003, ut=-0024, (29)

where u* = u,/u are dimensionless.

The two (mode n=1) bifurcation points for this strain-energy function are given by
A =1.772 and 2.545. Higher order modes are not possible.

To plot our results we choose A (the principal stretch in the spherical configuration) as our
abscissa. In this way A may be thought of as our fundamental parameter defining a value of the
pressure P* through (23). The problem of stability when choosing the pressure as an
(increasing) parameter is then avoided.

In order to plot a post-bifurcation curve we must define a measure of the “asphericity”
which we denote by B. We first choose

Bi= [max {IAA =1, A fa = 1]} 30

This then gives a measure of the difference in the deformation between the spherical and
aspherical solutions. Note that 8, =0 if and only if the membrane is in the spherical configura-
tion.

In Fig. 1 we plot B, against A for the three-term strain-energy function (29). The “closed
loop” behaviour is evident.

We recall that we have assumed ab initio that the aspherical solution path remains
axisymmetric, which may not be the case in practice.
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1y
Fig. 1. Plot of the deformation asphericity 8, against A for the three-term strain-energy function (29).
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it is well known that the deformation away from the spherical configuration (in the
neighbourhood of the mode » = 1 bifurcation points) can either be through a thinning/thicken-
ing of the poles, or by a radial displacement asymmetric about the equatorial plane, or any
combination of these. We find that the thinning/thickening is the dominant mode along the
aspherical solution path with a small change of shape. Since we may have either pole thinning
or thickening these two solutions are equivalent, the only difference between them is a rigid
body rotation of 7 radians. We note that both of these solutions map onto the single aspherical
solution path.

If, for definiteness, we suppose that r'(0) = A,(0) = A,(0)> A > [r'(7)| = Ay(7) = Ay(7) then,
for the strain-energy function (29),

Bi=r@/x-1 (3h

In order to demonstrate the change in shape of the membrane we choose a second
asphericity parameter given by

B, =(max {r*}— min {r*})/A (32
Osf<n O<8s7n
where
r¥ )= (r'+ )" (33

is the radius of the middle surface in spherical coordinates. In (33) we have taken

2(0) = — z(m). (34)

In (32) we divide by A in order to normalize the asphericity. Note that 8, = 0 if and only if
the shape of the membrane is spherical. In Fig. 2 we plot 8, against A for the three-term
strain-energy function (29).

The small values of 3, in Fig. 2 indicate the almost spherical shape of the membrane through
the aspherical range, even though the deformation can be very different from that in the
spherical configuration, as shown in Fig. 1. Following the post-bifurcation path we find that the
initial aspherical deformation is composed largely of the thinning/thickening of the poles. The
polar diameter is virtually maintained but there is some reduction in the equatorial diameter when
compared with the membrane in the spherical configuration at the same pressure. This mode of
behaviour is continued until the first local maximum in Fig. 2 is reached. The asphericity then
declines, the equatorial radius growing back towards the values A, (that it would have in the
spherical configuration). As A is further increased the thinner hemisphere expands more than
the thickened hemisphere and the asphericity grows to the second maximum in Fig. 2. The
membrane then returns to the spherical mode at the second bifurcation point.
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Fig. 2. Plot of the geometrical asphericity B, against A for the three-term strain-energy function (29).
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Also of interest is the volume change on going from the spherical to the aspherical
configuration. It was shown in [5] that there is no volume change to first order in small
displacements. In Fig. 3 we show that this is not so for the developing aspherical mode. We plot
the ratio V/Vg against A for the three-term strain-energy function (29), where V is the
enclosed volume in the aspherical configuration and V, is the volume in the spherical
configuration at the same pressure. ‘

We have shown in Fig. 2 that the strain-energy function (29) does not aliow a large change
in shape, even at the maximum of the asphericity. In the experimental results available[6, 7] the
change of shape is considerably more than that predicted by (29). However, the strain-energy
function (29) is not a model of either of the rubber-like materials used in [6] or [7] and there is
insufficient data available to produce a good model of them. Also, we are assuming that the
shape of the membrane remains axisymmetric, which may not necessarily be the case.

In the next section we will show that an initial imperfection in the thickness of the
membrane can increase the asphericity and give a closer approximation to the experimental
results.

To conclude this section we plot the post-bifurcation curve for a simple single-term strain—
energy function with a; = 1.5,

By plotting the measure of the aspherical shape B, against A several interesting features are
shown. There is a single bifurcation point at A = 1.668. The scale for 8, has been changed and
the aspherical shape can become quite pronounced. Also, we have “turning points” in the
aspherical solution path and aspherical solutions can exist at values of A before the bifurcation
point. For a given value of the pressure (or A) there may be one, two or three aspherical
solutions, each successive one corresponds to a greater thinning/thickening of the poles.

This particular strain-energy function is not proposed as a realistic material model, the
maximum strains after the first turning point become extremely large.

Needleman([3} has plotted similar curves for imperfect spherical membranes with single-
term strain-energy functions.

5. INFLATION OF IMPERFECT SPHERICAL MEMBRANES

It was shown in [2] that imperfections in the initial shape of the middle surface of the
membrane do not have a significant effect on the solutions obtained for a perfect sphere. We
now consider the case where the initial shape of the membrane middle surface is spherical, but
where the thickness is non-uniform. This simple case allows us to use the equations and
numerical method of the previous section with only a minor modification.

For definiteness we consider two initial imperfections, one which is asymmetric about the
equator and one symmetric. We write

(a) H=H(1+8cos 9), (35
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Fig. 3. Plot of the volume ratio V/V, against A for the three-term strain-energy function (29).
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Fig. 4. Plot of the geometrical asphericity 8, against A for a single-term strain-energy function with
a = 1.5

and
)] H=H(+68cos20), (36)

where H is the average thickness of the membrane and § is a measure of our imperfection. The
smoothness conditions (4) are satisfied by (35) and (36).

To solve eqns (16), (17) and (19) with (13) we again choose the three-term strain-energy
function (29) so that the solution paths for the imperfect membranes may be compared with
those of a perfect sphere. We write the pressure P* as

P*=Pj(1+ 8cos V), (37

where V¥ is 8 or 26 depending on the choice of (35) or (36). The average pressure P is then given
by (23) and so we may retain A as our fundamental parameter. Again for definiteness we choose
8 = 0.01, which then represents a maximum thickness variation of about 2%. This is not so large
as to be unreasonable, while it is large enough to separate the perfect and imperfect cases.

In Fig. 5 we plot the solution paths, B, against A, for the asymmetric imperfection (35).

1t is immediately apparent in Fig. 5 that the bifurcation has been destroyed by the
imperfection. The solution initiated in the undeformed configuration corresponds to a greater
deformation of the initially thinner pole, as we would expect. The asphericity is greatly
increased in the post-bifurcation region and this corresponds to a “perturbation” of the
aspherical solution path for a perfect spherical shell, which is also shown. We recall that this
aspherical splution path corresponds to two equivalent solutions.

Also shown in Fig. S is a closed solution path. The upper portion of this closed curve also
corresponds to a perturbation of the aspherical solution path for a perfect sphere, but, in this
case, the initially thicker pole is deformed much more than the other, initially thinner, pole. The
lower portion of this closed solution path is a perturbation of the spherical configuration of an
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Fig. 5. Plot of the geometrical asphericity B, against A for an asymmetric initial thickness imperfection.
The post-bifurcation path for a perfect sphere is included (-—---] ).

initially perfect spherical shell. The initially thicker pole is deformed slightly more than the thinner
pole. Clearly this closed solution path may only be reached from the undeformed configuration by
*“snap through™.

Figure 6 shows the corresponding solution curves for the symmetric imperfection (36). In
this case the thinning/thickening remains indifferent to the choice of pole and so the two
solutions are equivalent. This means that bifurcation can still occur. The fundamental solution
(corresponding to the trivial solution in the spherical case) corresponds to a deformation that is
symmetric about 9 = #/2 with the (thinner) equator expanding more than any other radius. The
point in the middle of the post-bifurcation range where the post-bifurcation path and the
fundamental solution path cross has no special significance. While the asphericity of each
solution is the same the two deformations are very different.

Needleman[3] has plotted curves similar to those given here for imperfections of 0.001 and
0.0001 in order to approach the perfectly spherical case. However, the existence of bifurcation
points or disjoint solution paths was not mentioned.

6. ASYMPTOTIC SOLUTIONS

In order to obtain some insight into the possible behaviour of post-bifurcation paths we now
consider the asymptotic shape of inflated membranes as the enclosed volume —» =, By returning
to the equations for a general axisymmetric membrane, (10) and (11), we can also consider the
asymptotic shape of imperfect membranes.

002
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Fjg. 6. Plot of the geometrical asphericity B, against A for a symmetric initial thickness imperfection. The
bifurcation points are denoted by O. Also included is the post-bifurcation path for a perfect sphere
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Isaacson[9] has considered this problem for the case of a Mooney-Rivlin material (a
two-term strain-energy function with a, =2, a, = — 2). We extend his analysis to the full class
of strain-energy functions (26).

Wu[13) has given a formal asymptotic analysis for the Mooney-Rivlin case, but we do not
use his approach here.

From (26) we have

Wl = pta (A% = (A1) ™) Ay, (38)
Wi = n (A% = (AjA2) ™)/ A, (39)

Substituting into (10) and (11) we can write

B (A1 = (AR) ™) 2422 + 1(P'2' = P'2")] = (A — (AiA)) ™) A2 = 0, (40)
20 (A% = (A Ao ®*)APAy + (rZ') P* =0 (41

First suppose that P — o as the enclosed volume - ® (we suppose that both 4,(5), A,(S) —»x,
S &[0, L)). In this case we must have, from (41),

a,>3 or a,<-3[2atleastone a,, (42)

to ensure the existence of solutions. This is precisely the necessary and sufficient condition to
ensure the existence of solutions for all pressures when inflating a spherical membrane[10].
The asymptotic shape of the membrane depends on whether the dominant term in the left
hand side of (41) corresponds to a positive or negative a,. We write a* for the largest positive
a, and a~ for the negative one of largest magnitude. If there are no positive (negative) a,’s then
a*(a”) is taken to be zero.
To satisfy (42) we must have either

a*>3 or a " <-32 @3)
Case 1
Suppose that a™ < -3/2 and that
-2a">a". (44)
In this case (41) becomes
27l = PH(r ) 45)

as P>, where (u~, a”) form a (u,, a,) pair. Equation (40) becomes
B (Y + @+ - 2] =0 (46)

which, with (13), is the equation of a sphere[9].
The Mooney-Rivlin strain-energy function (a* =2, o™ = ~2) falls into this category.

Case 2
Now suppose that a* >3 and that

a*>-2a". 47
As above, we can show that (40) reduces to
AL =AY+ (P + (VP + =22’} =0 (48)

as P,
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By comparing (48) with (46) we note that the spherical shape is a solution. Generally
through, we cannot, at present, rule out other aspherical asymptotic solutions for this subclass
of materials. This is also the case when a* =~2a".

If we suppose that

-(32)<a,<3 (eache,), (49)
then P -0 as A;, A;—>® and we find similar asymptotic behaviour according to
a*s-2a", (50)

as discussed above.

In the special case where a*=3 or a”=-(3/2) then P reaches an asymptote as the
enclosed volume -, but we again have the two cases according to (50).

For a single-term strain-energy function we note that a; <0 ensures that the asymptotic
shape is a sphere, while this is not necessarily so if a; > 0.

From (48) and (46) we can see that any possible aspherical asymptotic solutions arise from
the term (A,/A;)*. From (6) and (7) this term depends on the initial shape of the membrane
middle surface through R(S) but not on the initial thickness H(S). Consequently initial
imperfections in the shell thickness do not affect the asymptotic shape. We have already noted
that initial imperfections in shape do not appreciably affect the bifurcation behaviour of
spherical membranes. Heuristically it does not seem likely that the initial shape will have much
effect on the asymptotic shape. If this is so the spherical configuration will be the unique
solution to (48).

If a strain-energy function predicts a closed loop bifurcation behaviour (or no bifurcation at
all) then there will in general be a unique solution path for a large enough inflation (as indicated
by Figs. 5 and 6). In this case the asymptotic shape of both perfect and imperfect shells will be
spherical.

However, there is a large class of strain-energy functions (a* > -2a~) which may allow
aspherical asymptotic shapes. For these strain-energy functions which have a pair of bifur-
cation points we cannot exclude the possibility of two distinct post-bifurcation paths, existing for
all values of A and not returning to the spherical solution path.
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